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Abstract only. Super-peer networksuch as Morpheus [13] (by
far the most popular file-sharing system today) present a
A super-peeris a node in a peer-to-peer network that operatggoss between pure and hybrid systemsufer-peeis a
both as a server to a set of clients, and as an equal in a netwegffje that acts as a centralized server to a subset of clients.
?k]:esil:ﬁnzrrgr?te(r;f.iciselrjlger;?ii;;:fgg&kzej:::me :n%at'ﬁgce baWEients submit queries to their super-peer and receive re-
y ' N ¢ lts from it, as in a hybrid system. However, super-peers

load balancing and robustness to attacks provided by lolisérdl | ted t h oth - t
search. Furthermore, they take advantage of the hetertby;engre also connected 1o each other as peers In a pure system

of capabilities (e.g., bandwidth, processing power) acpers, &€ routing messages over Fhis overlay network3 anq sub-
which recent studies have shown to be enormous. Hence, ABI{ting and answering queries on behalf of their clients
and old P2P systems like Morpheus and Gnutella are adoptidd themselves. Hence, super-peers are equal in terms of
super-peers in their design. search, and all peers (including clients) are equal in terms

Despite their growing popularity, the behavior of supeepeof download. A “super-peer network” is simply a P2P
networks is not well understood. For example, what are thetwork consisting of these super-peers and their clients.
potential drawbacks of super-peer networks? How can superAlthough P2P systems have many strengths, each type
peers be made more rgliable‘_? _How many (?Iients should a SuRﬂ"system also has its own weaknesses. Pure P2P sys-
peer take on to maximize eff|C|ency? In this paper We EXamifems tend to be inefficient; for example, current search in
super-peer networks in detail, gaining an understandirtbeif . . .
fundamental characteristics and performance tradeofesalb Gnutella c0n5|st§ O.f flooding the network with query mes-
present practical guidelines and a general procedure édéh sages. Much existing research ha§ focuspd on improving
sign of an efficient super-peer network. the search protocol, as discussed in Section 2.

Another important source of inefficiency in pure sys-

tems is bottlenecks caused by the very limited capabili-
1 Introduction ties of some peers. For example, the Gnutella network

experienced deteriorated performance — e.g., slower re-
Peer-to-peer (P2P) systems have recently become a pgmonse time, fewer available resources — when the size of
lar medium through which to share huge amounts of dathe network surged in August 2000. One study [21] found
Because P2P systems distribute the main costs of stiese problems were caused by peers connected by dial-up
ing data — disk space for storing files and bandwidth fanodems becoming saturated by the increased load, dying,
transferring them — across the peers in the network, thasyd fragmenting the network by their departure. Peers
have been able to scale without the need for powerful, @@ modems were dying because all peers in Gnutella are
pensive servers. In addition to the ability to pool togethgiven equal roles and responsibilities, regardless of-capa
and harness large amounts of resources, the strengthbilit. However, studies such as [19] have shown con-
existing P2P systems (e.g., [6, 7, 14, 13]) include seffiderable heterogeneity (e.g., up to 3 orders of magnitude
organization, load-balancing, adaptation, and faultrtolalifference in bandwidth) among the capabilities of par-
ance. Because of these desirable qualities, many resetitipating peers. The obvious conclusion is that an effi-
projects have been focused on understanding the isstiest system should take advantage of this heterogeneity.
surrounding these systems and improving their perf@assigning greater responsibility to those who are more ca-
mance (e.g., [5, 10, 18]). pable of handling it.

There are several types of P2P systems that reflect varyHybrid systems also have their shortcomings. While
ing degrees of centralization. lpure systems such ascentralized search is generally more efficient than dis-
Gnutella [7] and Freenet [6], all peers have equal rol&shuted search in terms of aggregate cost, the cost in-
and responsibilities in all aspects: query, download, etairred on the single node housing the centralized index
In a hybrid system such as Napster [14], search is pés-very high. Unless the index is distributed across sev-
formed over a centralized directory, but download still oeral nodes, this single node becomes a performance and
curs in a P2P fashion — hence, peers are equal in downlsadlability bottleneck. Hybrid systems are also more vul-
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nerable to attack, as there are few highly-visible targels Related Work

that would bring down the entire system if they failed.
ngre are several existing studies on the performance of

Because a super-peer network combines element id and pop Ref -
both pure and hybrid systems, it has the potential to co rid-and pure sy§tems. eterence [22] compares
1e performance of hybrid systems with different replica-

bine the efficiency of a centralized search with the autot. d i h S |
omy, load balancing and robustness to attacks provided and server organization schemes. Several measure-
t studies over Gnutella, a pure system, include [1]
n

distributed search. For example, since super-peers ac ; .
P perp [19]. These studies conclude that an effective sys-

centralized servers to their clients, they can handle QBet (1 t “freeloading”. wh d
more efficiently than each individual client could. HowieM mus ) prevent "freeloading”, where some nodes

ever, since there are relatively many super-peersina s e from the community W't.hOUt cont.rlbutmg,_:_md 2) dis-
tem, no single super-peer need handle a very large lo ute work tq peers according to their capapllltleg. Inre
nor will one peer become a bottleneck or single point (rjds to the first pomr:, systergs;uch akStMgJON?“OO [12]
failure for the entire system (though it may become a bc?LD C}ngomg retsearct (;? [S’ ]) seekto tevekop mc;ahn—
tleneck for its clients, as described in Section 3). IVes Tor users o contribute. super-peer networks are the
. first attempt known to the authors to address the second
For the reasons outlined above, super-peer netwogin;.
clearly have potential; however, their design involves per puch research has also been focused on improving
formance tradeoffs and questions that are currently n@fyrchy efficiency by designing good search protocols:
well understood. For example, what is a good ratio @f; example, Chord [20], Pastry [17], CAN [16], and
clients to super-peers? Do super-peers actually magkgyestry [24] in the specific context of supporting point
search more efficient (e.g., lower cost, faster responsgeries, and [4, 23] in the context of supporting more
times), or do they simply make the system more stablgzyressive queries (e.g., keyword query with regular ex-
How much more work will super-peers handle compareglassions). Each of these search protocols can be applied
to clients? Compared to peers in a system with n0 SUPRJs per-peer networks, as the use of super-peers and the

peers? How should super-peers connect to each othehgice of routing protocol are orthogonal issues.
can recommendations be made for the topology of the

super-peer network? Since super-peers introduce a single-
point of failure for its clients, are there ways to makethe®@ Problem Descri pti on
more reliable?
In this paper, our goal is to develop practical guidelind$ describe how a super-peer network functions, we will
on how to design super-peer networks, answering quékst give background on pure P2P networks, and then de-

tions such as those presented above. In particular, §Gfibe what changes when peers in the pure system are
main contributions are: replaced by super-peers and clients.

e \We present several “rules of thumb” that summarize the
main tradeoffs in super-peer networks (Section 5.1). 3.1  Pure peer-to-peer networks

e We formulate a procedure for the global design of a

super-peer network, and illustrate how it improves tHB a P2P system, users submit queries and receive results
performance of existing systems (Section 5.2) (such as actual data, or pointers to data) in return. Data

e We give guidelines for local-decision making at ghared in a P2P system can be of any type; in most cases

super-peer to achieve a globally efficient network (Se?io-srerr:S ?\t‘é‘r:et;lef' Sg‘farézstaczﬂaa:fg t";‘:koer 2’:(3;n?p=3ero?r:izte
tion 5.3). 9 yp ' PI€,

« We introduce “k-redundancy”, a new variant of SupeFi_le—sharing system, queries might be unique identifiers,

peer design, and show that is improves both reliabiligé keywords with regular expressions. Each node has a

and performance of the super-peer network. llection of files or other Fjata to share. i
Two nodes that maintain an open connectionedge

By carefully studying super-peer networks and presentiggyyeen themselves are calleeighbors The number of
our results here, our goal is to provide a better understarr\,galghbors anode has is calleddtstdegree Messages are
ing of these networks that can lead to improved systemg, ieq along these open connections only. If a message

The remainder of the paper is organized as followseeds to travel between two nodes that are not neighbors,
Section 2 discusses related work. Section 3 gives a forritawill travel over multiple edges. The number of edges
description of the search problem, and outlines the différaveled by a message is known ashitgpcount, or alter-
ent parameters describing a super-peer network. Sectiaredively, itspath length
describes the framework for analysis used to generate ouwhen a user submits a query, her node becomes the
results, and Section 5 presents these results in the forngoéry source In the baseline search technique used by
guidelines. Gnutella, the source node will send the query to all of
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its neighbors. Other routing protocols such as those e P
scribed in [4, 23] may send the query to a select subse ’ . ‘

neighbors, for efficiency. When a node receives a qu
it will process it over its local collection. If any resultesa | , ) X
found, it will send a single Response message back tc "H"I: )
source. The total result set for a query is the bag ur ‘
of results from every node that processes the query.
node may also forward the query to its neighbors. In
baseline Gnutella search, query messages are gitiaree
to live (TTL) that specifies how many hops the mess:
may take. When a node receives a query, it decremc.io
the TTL, and if the TTL is greater than 0, it forwards th
query to all its neighbors. The number of nodes that p
cess the query is known as treachof the query.

In some systems such as Gnutella, the location of
source is not known to the responding node. In this case,
the Response message will be forwarded back along the
reverse path of the query message, which ultimately leadetadata to its index. When a client leaves, its super-peer
back to the source. In the case where the source locatigih remove its metadata from the index. If a client ever
is known, the responder can open a temporary connectigedates its data (e.g., insertion, deletion or modification
to the source and transfer results directly. While the firah item), it will send this update to the super-peer as well.
method uses more aggregate bandwidth than the seconideihce, super-peer networks introduce two basic actions in
will not bombard the source with connection requests, addition to queryjoins (for which there is an associated
will the second method, and it provides additional beneflesave, andupdates

such as anonymity for the query source. Hence, in thiswhen a client wishes to submit a query to the network,

i
=]
3

r%i_gure 1: lllustration of a super-peer network (a) with no re-

8undancy, (b) with 2-redundancy. Black nodes represergrsup

eers, white nodes represent clients. Clusters are maskéteb
hed lines.

paper, we assume the first method is used. it will send the query to its super-peer only. The super-
peer will then submit the query to its neighbors as if it
3.2 Super-peer networks were its own query, and forward any Response messages it

receives back to the client. Outside of the cluster, a cient

A super-peer network operates exactly like a pure P2P ngirery is indistinguishable from a super-peer’s query.

work, except that every “node” in the previous description gince clients are shielded from all query processing and

is actually a super-peer, and each super-peer is conneglgfic weak peers can be made into clients, while the core
to a set of clients. Clients are connected to a single SUpfhe system can run efficiently on a network of powerful
peer only. Figure 1a illustrates what the topology of & her.peers. Hence, as mentioned earlier, super-peer net-
super-peer network might look like. We call a super-pegf,rks use the heterogeneity of peers to their advantage.
and its clients @luster, wherecluster sizeis the number a5 as we will see in Section 5. the overhead of main-
of nodes in the cluster, including the super-peer itself. l.’%ining an index at the super-peer is small in comparison

pure P2P network is actually a “degenerate” SUPEr-p§§hine savings in query cost this centralized index allows.
network where cluster size is 1 — every node is a super-

peer with no clients. Super-peer redundancy. Although clusters are efficient,
When a super-peer receives a query from a neighbaisuper-peer becomes a single point of failure for its clus-
it will process the query on its clients’ behalf, rather thaigr, and a potential bottleneck. When the super-peer fails
forwarding the query to its clients. In order to process tii simply leaves, all its clients become temporarily dis-
query for its clients, a super-peer keeps an index over ¢@@nnected until they can find a new super-peer to connect
clients’ data. This index must hold sufficient informatioi0.
to answer all queries. For example, if the shared data ardo provide reliability to the cluster and decrease the
files and queries are keyword searches over the file titlead on the super-peer, we introduce redundancy into the
then the super-peer may keep inverted lists over the titlbssign of the super-peer. We say that a super-péer is
of files owned by its clients. If the super-peer finds amgdundanif there arek nodes sharing the super-peer load,
results, it will return one Response message. This Rerming a single “virtual” super-peer. Every node in the
sponse message contains the results, and the addressrinfal super-peer is partnerwith equal responsibilities:
each client whose collection produced a result. each partner is connected to every client and has a full
In order for the super-peer to maintain this index, whendex of the clients’ data, as well as the data of other part-
a client joins the system, it will send metadata over its caters. Clients send queries to each partner in a round-robin
lection to its super-peer, and the super-peer will add thigshion; similarly, incoming queries from neighbors are
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distributed across partners equally. Hence, the query laamirce (e.g., as part of the protocol). We assume the actual
on each partner is a factor bfless than on a single supereutdegrees will vary according to a power-law with this
peer with no redundancy. “suggested” outdegree as the average, since some super-

A k-redundant super-peer has much greater availabilitgers will be more able and willing to accept a large out-
and reliability than a single super-peer. Since all pagnetegree than others.
can respond to queries, if one partner fails, the others may
continue to service clients and neighbors until a new part- .
ner can be found. The probability that all partners will faft  Evaluation M odél
before any failed partner can be replaced is much lower
than the probability of a single super-peer failing. We will compare the performance of super-peer networks

However, super-peer redundancy comes at a cost. in file-sharing application based on two types of metrics:
order for each partner to have a full index with which t§ad, andquality of results
answer queries, a client must send metadata to each dfoad is defined as the amount of work an entity must
these partners when it joins. Hence, the aggregate cosfiefper unit of time. Load is measured along three re-
a client join action isk times greater than before. Alsosource typesincoming bandwidthoutgoing bandwidth
neighbors must be connected to each one of the partn@pglprocessing powerBandwidth is measured in bits per
so that any partner may receive messages from any neigcond (bps), processing power in cycles per second (Hz).
bor. Assuming that every super-peer in the network Because load varies over time, we will be using mean-
k-redundant, the number of open connections increa¥ed!e analysis, described in further detail in the next sec-
by a factor ofk?. Because the number of open conne§ion. We treat incoming and outgoing bandwidth as sepa-
tions increases so quickly asincreases, in this paper we'ate resources because their availability is often asymmet
will only consider the case whefe= 2. Henceforth, we ric: many types of connections (e.g., cable modem) allow
will use the term “super-peer redundancy” to refer to tH@reater downstream bandwidth than upstream. As a re-
2-redundant case only. Figure 1b illustrates a super-p&elt, upstream bandwidth may become a bottleneck even
network topology with redundancy. if downstream bandwidth is abundant.

In terms of eliminating bottlenecks and reducing load, Some systems are efficient overall, while other systems
one may wonder whether a more effective method thEtRY be less efficient, but put a lower load on individual
redundancy would be to simply make each partner intd#per-peers. Hence, we will ook at batfulividualload,
super-peer with half the clients — that is, have twice tfige load of a single node, as well aggregateload, the
number of clusters at the half the original size and no r&um of the loads of all nodes in the system.
dundancy. In this way, the individual query load on each We measure quality of results by thember of results
super-peer will be halved as with 2-redundancy, and triurned per query. Other metrics for quality of results
index will be half the size. Aside from the obvious loséften includes relevance of results and response time. Be-
of reliability with this new method, splitting the cluster i cause relevance of results is subjective and application
two actually has the surprising effect of puttingi@ater SpPecific, we do not use this metric. Also, our performance
load on each super-peer than in the 2-redundant casé)aglel does not capture response time, although relative
result we will see in Section 5.1. response times can be deduced by other means, as seen in

) Section 5.1.
Topology of the super-peer network. Gnutella is the

only open P2P system for which topology information is ]
known. In Gnutella, the overlay network formed by th.1 Performance Evaluation

peers follows a power-law, meaning the frequetigyof We will be comparing the performance of differegun-

an outdegred is proportional ta*, wherex is some con- . . . o .
. figurationsof systems, where a configuration is defined
stant. The power-law naturally occurs because altruis]i . . ) )
a set of parameters, listed in Table 1. Configuration

and powerful peers voluntarily accept a greater numb .

of neighbors. (We will see in Section 5.1 how a greatgfelrameters descrlpe both th_e topolo_gy of the network, as
. well as user behavior. We will describe these parameters

outdegree results in greater load).

. in further detail as they appear later in the section.
From crawls of the Gnutella network performed in June . . : o
There are 4 steps in the analysis of a configuration:

2001, we found the average outdegree of the network to
be 3.1. In a super-peer network, however, we belie@ep 1: Generating an instance. The configuration pa-
the average outdegree will be much higher, since supemeters listed in Table 1 describe the desired topology of
peers have greater load capacity than an average peer.tBenetwork. First, we calculate the number of clusters as
cause it is difficult to predict the average outdegree ofra= g,%ggéi We then generate a topology ofnodes
super-peer network, we will assume that every super-péased on théype of graph specified. We consider two

will be given a “suggested” outdegree from some globglpes of networks:strongly connectedand power-law
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Name Default Description

Graph Type Power The type of network, which may be strongly connected or peiaer
Graph Size 10000 The number of peers in the network

Cluster Size 10 The number of nodes per cluster

Redundancy No A boolean value specifying whether or not super-peer redooylis used
Avg. Outdegree| 3.1 The average outdegree of a super-peer

TTL 7 The time-to-live of a query message

Query Rate 9.26 - 10~3 | The expected number of queries per user per second

Update Rate 1.85-10—2 | The expected number of updates per user per second

Table 1:Configuration parameters, and default values

Action EBide‘;idth Cost (F’Jofie)ssmg Cost Step 2: Calculating expected cost of actions. There
€S nits “ ” : : . TA
Send Query 82 + query Tength| .44 1 003 - query are three “macro” actions in our co.st model: query, join
length and update. Each of these actions is composed of smaller
Recv. Query 82 + query length| .57 + .004 - query “atomic” actions for which costs are given in Table 2.
length There are two types of cost measured: bandwidth, and

Process Query
Send Response

0
80 + 28 - # addr

14 + 1.1 - # results
.21 + .31 - #addr

processing power. In terms of bandwidth, the cost of an

1476 - #results +.2 . #results action is the number of bytes being transferred. We de-

Recv Response | 80 + 28 - #addr | .26 + .41 . # addr fine the size of a message by the Gnutella protocol where

, +76 - #results +-3 - #results applicable. For example, query messages in Gnutella in-
Send Join 80 + 72 - #files 44 + .2 - #files lud 22_bvte Gnutella head 2 bvte field for fl
Recv. Join 80 + 72 - #files | .56 + .3 #files clude a c2-byte Lnutella header, a yi€ hield 1or Tlags,
Process Join 0 14 +10.5 - #files and a null-terminated query string. Total size of a query
Send Update 152 6 message, including Ethernet and TCP/IP headers, is there-
Recv. Update | 152 -8 fore 82 + query string length. Some values, such as the
Process Update | O 30

size of a metadata record, are not specified by the proto-
col, but are a function of the type of data being shared.
These values, listed in Table 3, were gathered through ob-
servation of the Gnutella network over a 1-month period,

Packet Multiplex | O .01- # open connectiong

Table 2:Costs of atomic actions

Description Value described in [23].

Expected length of query string 12B h . . . .

Average size of result record 76 B T e processing cost§ of actions are given in coarse
Average size of metadata for a single file 72B units, and were determined by measurements taken on a
Average number of queries per user per secqnd.26 - 10—* Pentium 111 930 MHz processor running Linux kernel ver-

sion 2.2. Processing costs will vary between machines and
implementations, so the values seen in Table 2 are meant
to be representative, rather than exact. A unit is defined

We study strongly connected networks as a best-case $ed2€ the cost of sending and receiving a Gnutella mes-
nario for the number of results (reach covers every nod@ge with no payload, which was measured to be roughly
so all possible results will be returned), and for bandwid#?00 cycles on the measurement machine. When display-
efﬁciency (no Response messages will be forwarded, Igg figures in Section 5, we will convert these coarse units
bandwidth is conserved). We study power-law networkg cycles using this conversion ratio.
because they reflect the real topology of the Gnutella net-The packet multiplex cost is a per-message cost reflect-
work. Strongly connected networks are straightforward tog the growing operating system overhead of handling
generate. Power-law networks are generated accordindgi@oming and outgoing packets as the number of open
the PLOD algorithm presented in [15]. connections increases. Please see Appendix A for a dis-
Each node in the generated graph corresponds to a siassion of this cost and its derivation.
gle cluster. We transform each node into a single superAs an example of how to calculate the cost of a “macro”
peer or “virtual” super-peer if there is redundancy. Waction, consider the cost of a client joining the system.
then addC clients to each super-peer, whetefollows From the client perspective, the action consists of the
the normal distributionV (p., .2u.), and whereu,. is the startup cost of sending a Join message, and for each file
mean cluster size defined as = ClusterSize- 1 if there in its collection, the cost of sending the metadata for that
is no redundancy and, = ClusterSize- 2 if there is. To file to the super-peer. Suppose the client hdges and
each peer in the network, both super-peers and clients, wepen connections. Outgoing bandwidth for the client
assign a number of files and a lifespan according to tisetherefore80 + 72 - =, incoming bandwidth is 0, and
distribution of files and lifespans measured by [19] ov@rocessing cost igl4 + .2 -z + .01 - m. From the perspec-
Gnutella. tive of the super-peer, the client join action consists ef th

Table 3:General Statistics
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startup cost of receiving and processing the Join messaugr-node basis. In our model, we make the simplifying
and then for each file owned by the client, the cost of rassumption that when a node leaves the system, it is im-
ceiving the metadata and adding the metadata to its indesediately replaced by a node joining the system. Hence,
In this example, we see how an action can involve multhe rate at which nodes join the system is the inverse of
ple nodes, and how cost is dependent on the instanceahaf length of time they remain logged in. Update rate
the system (e.g., how many files the client owns). is obtained indirectly, since it is impossible to observe

Updates, like joins, are a straightforward interaction bgirough experiments how frequently users updated their
tween a client and super-peer, or just the super-peer.itseffllections. We first assume that most online updates oc-
Queries, however, are much more complicated since thy as a result of a user downloading a file. We then use
involve a large number of nodes, and depend heavily the rate of downloads observed in [22] for the OpenNap
the topology of the network instance. Here, we descrisgstem as our update rate. Because the cost of updates is
how we count the actions taken for a query. For our evédw relative to the cost of queries and joins, the overall
uations, we assume the use of the simple baseline seg@etiormance of the system is not sensitive to the value of
used in Gnutella (described in Section 3). However, othiée update rate.
protocols such as those described in [23] may also be useiven the cost and rate of each type of action, we can
on a super-peer network, resulting in overall performanoew calculate the expected load on an individual ndde
gain, but similar tradeoffs between configurations. for a network instancé:

We assume a message takes an equal amount of timqg[MT\]] — Z E[Cysr|I] - E[F,s]+
to travel across any edge, and that each super-peer takes senetwork
an equal amount of time to process and forward queries. B[C;s7|T) - E[F;s|T) + E[Cusr|I] - E[Fus] (1)
Given these assumptions, we may use a breadth-first
traversal over the network to determine which nodes rg- . is defined as the number of queries submittedSby
ceive the query, where the source of the traversal is s second, sd|[F,s] is simply the query rate per user
query sources, and the depth is equal to the TTL of thgisted in Table 1, for allS. F;s|I and F,s are similarly
guery message. Any response message will then traygfined. '
along the reverse path of the query, meaning it will travel \we can also calculate the expected number of results
up the predecessor graph of the breadth-first traversal uBgr query originated by nods
it reaches the sourcg. Every node along this path must
sustain the cost of forwarding this message. E[Rs|I] = Z E[Nr/|1] )

To determine how many results a super-gEeeturns, Tenetwork

we use the query model developed in [22]. Though this often we will want to calculate the expected load or re-
query model was developed for hybrid file-sharing sygy|ts per query on nodes that belong to someéxsetfined
tems, it is still applicable to the super-peer f“e'Shar"liyacondition: for example) may be the set of all nodes
systems we are studying. Given the number of files jRat are super-peers, or the set of all super-peers with 2

the super-peer's index, which is dependent on the pagighbors. The expected load,, of all such nodes is
ticular instancel generated in step 1, we can use thigefined as:

model to determineE[Nr|I], the expected number of S o E[M,|I]
results returned, an@[Kr|I], the expected number of E[Mgl|I]l = neeQ

T's clients whose collections produced results. Note that @
since the cost of the query is a linear function o#(| 1) Similarly, aggregate load is defined as:

and (Kr|I), and load is a linear function of the cost of

queries, we can use these expected values to calculate ex- E[M|I] = Z E[M,|I] (4)
pected load. Please see Appendix B for how we calculate
E[Nr|I] andE[K|I] using the query model.

Step 3: Calculating load from actions. In step 2 we Step 4 Repeated Trials.  We run analysis over sev-
calculate expected values 657, C;s7, andC,sr, the €ralinstances of a configuration and averagj/|] over
cost of a query, join and update action, respectively, whéigse trials to calculate[E[M|I]] = E[M], the value by
the action is initiated by nod& and incurred on nod&, Which we compare different configurations. We also cal-
for every nodeS and and every nod@ in the network culate 95% confidence intervals f&i{ A1 |1].
instance.S andT' may be super-peers or clients.

For each type of action, we need to know the rate 3t Results
which the action occurs. Default values for these rates are
provided in Table 1. Query rate is taken from the geneial this section we present the results of our evaluations on
statistics listed in Table 3. Join rate is determined onaawide range of configurations. Because there are many

®3)

nenetwork
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different scenarios and factors to consider, we do not &tn, there is the cost of sending queries to every super-
tempt to report on all the results here. Instead, from aleer, a startup cost for every super-peer as they process
our results we distill a few important “rules of thumb'the query, and the overhead of additional packet headers
to follow while designing a P2P topology, and presefur individual query responses. In fact, it is these extra
these rules to the reader, supported with examples froosts, which grow inversely proportionally to the number
our experiments. We then formulate a general procedwfesuper-peers in the system, that cause the knee to occur
that incorporates the rules and produces an efficient topialFigure 2.

ogy. Finally, we discuss how an individual node without Though Jarge cluster size is ideal for aggregate load, it
a global view of the system might make local decisions {5 the opposite effect on individual super-peer load, with
form a globally efficient network. a few exceptions. Figure 3 shows the individual incom-
Recall that all results in the following section are expg pandwidth required of super-peers for the same two
pected values. All figures show the expected value %Fstems as before, as cluster size is varied. With one ex-
costs, along with vertical bars to denote 95% confidenggption, we see that individual load grows rapidly with the
intervals for E[valuginstance] where appropriate. All gyowth of cluster size. For example, in the strongly con-

figures use the default parameters listed in Table 1, Wicted system, a super-peer with 100 clients has almost
less otherwise specified. Please refer to Appendix C fgfice the load as a super-peer with 50.

additional results. . o .
The exception we see in this figure, occurring when

there is a single super-peer (cluster size is 10000), only oc
5.1 Rulesof Thumb curs for incoming bandwidth, and not for outgoing band-

width or processing load. The explanation for this ex-
The four rules of thumb we gathered from our experieption is as follows: Most incoming bandwidth load for

ments are as follows: a_super-peer arises from forwarding query results from

1 (I:rr]((a:;esaesslr']r?d(':ll'j;tzrl Tc')zzdecreases aggregate load-bugifier super-peers to a client. If a cluster consists of a frac
| vViau . 1 i H __ _Cluster size ;

2. Super-peer redundancy is good. 23? gx(;frr?&r;?(ﬁ;nttr?: Ql?;\:avr?;r)igﬁ}gr thnatljtmclarsliseerr%/cnl be

3. Maximize outdegree of super-peers. submitting roughlyf of all queries on behalf of its clients.

4. Minimize TTL. Because files in its own index constitute rouglflpf all

Let us now examine the causes, implications and de@@%ponses to a querly,— f of all results will be sent from

of each. other clusters to this super-peer. Therefore, total exgaect

#1 Increasing cluster size decreasesaggregateload, but  incoming results is proportional tf- (1 — f), which has

increases individual load.  In terms of cluster size, @ Maximumay = 3 (i.e., atacluster size of 5000 in Fig-

there is a clear tradeoff between aggregate and individ&¢ 3). and two minimums gt =0 andf = 1. Incoming
load. Figure 2 shows the aggregate bandwidth requiredwidth of a super-peer when cluster size is 10000 is
by two systems as cluster size is varied. One system Ha4s much lower than when cluster size is 5000. This ex-
a strongly connected topology with TTL=1, shown as ¢EPtion is important to keep in mind if incoming (down-
best-case scenario for bandwidth. The other system §§§am) bandwidth is the bottleneck, and we are consid-
a power-law topology with average outdegree of 3.1 afing large cluster sizes. Thus, a system designer should
TTL=7, parameters reflective of the Gnutella topolog€ careful to avoid cluster sizes around a tenth to a half of
For now, ignore the curves for super-peer redundancy. {1 total number of peers (i.e., where load exceeds load at
both systems described, the expected number of resultsligsterSize= GraphSizg:
the same for all cluster sizes. Another exception to the rule can be found looking at
Both curves in Figure 2 show that aggregate load darocessing load when outdegree is large. Figure 4 shows
creases dramatically at first as cluster size increases. Aghividual processing load as a function of cluster size, fo
gregate load then experiences a “knee” around cluster size same two systems as before. Note that the processing
of 200 in the strong network and 1000 in the power-lal@ad of a super-peer in the strongly connected graph actu-
network, after which it decreases gradually. Intuitivelglly increases as cluster size becomes very small. The rea-
the fewer the super-peers in a system (i.e., the larger g for this behavior is the overhead of handling network
cluster size), the less communication overhead betwegaffic when the number of connections is large (see Ap-
super-peers there will be. At the extreme where there ipandix A for a discussion of this overhead). In a strongly
single super-peer (e.qg., cluster size is 10000 in Figure 2pnnected graph, the number of connections is equal to
gueries are sent directly from clients to a single “serveithe cluster size plu%%r? which reaches a maxi-
and results are sent directly from server to client. At thmum at very large and very small cluster sizes. The over-
other extreme (e.g., cluster size is 1), the same numbehehd of many open connections is high when cluster size
results are being returned as in the first case, but in additarge, but relative to the cost of other actions (such as
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Figure 2: Aggregate load decreases Figure 3: Individual load increases  Figure 4:Individual processing load
with cluster size with cluster size, with few exceptions

guery processing), it is small. On the other hand, wheedundancy increases aggregate load by about 2.5%, but
cluster size is small, the majority of the processing loattcreases individual load in each partner by 48% — driving
is due to this overhead. In most operating systems, iheown to the individual load of a non-redundant super-
default number of open connections is limited, meanimger when cluster size 40. Therefore, in terms of band-
overhead issues aside, having 1000+ open connectionsitth, super-peer redundancy gives us better performance
not feasible. However, in the cases where it is feasibtban both a system with no redundancy and the same clus-
this network overhead is an important consideration wheer size, and a system with no redundancy and half the
selecting small cluster sizes. We will see how the nuroluster size. Super-peer redundancy gives us the “best of
ber of open connections becomes a design consideratioth worlds” — the good aggregate load of a large cluster
in Section 5.2. size, and the good individual load of a smaller cluster size.

What is a good tradeoff between aggregate and individ-However, super-peer redundancy involves a tradeoff be-
ual load? The answer to this question is specific to theeen individual and aggregate load in terms of process-
application and situation. In general, individual good iag power. In the strongly connected system discussed
probably more important than overall good, since usegarlier where cluster size is 100, aggregate processing
are less likely to altruistically be a super-peer if cost isad increases by roughly 17% when super-peer redun-
very high. However, if all users belong to a single orgalancy is introduced, while individual processing load de-
nization — for example, they are running on a corporatecases by about 41%. (Note that since the number of
LAN — then aggregate load becomes quite important, sigper-peers/partners doubles, aggregate load can iecreas
all costs are ultimately incurred on a single entity. In addihough individual load decreases). Therefore, in a sys-
tion, a very important factor to consider is the availapilittem such as Gnutella, super-peer redundancy is definitely
and reliability of the system. With large cluster sizes ardcommended when individual load is the bottleneck, but
few super-peers, there are a few points of failure, whighould be applied with care if aggregate processing load
has a worse effect on availability should these super-peisra concern. Please see Appendix C for a discussion on
leave, fail or be attacked. By keeping cluster sizes smallper-peer redundancy in different configurations.
there are no easy targets for malicious users, and failure
of a super-peer leaves just a few clients temporarily u#3 Maximize outdegree of super-peers. In the cur-
connected. In general, then, it would be good to choosesat Gnutella network, weak peers with few resources will
cluster size that is small enough to keep a reasonable irinnect to few neighbors, while altruistic powerful peers
vidual load and provide reliability to the system, but larggonnect to many neighbors. This arrangement seems rea-
enough to avoid the knee in aggregate load when clustenable, since weak peers should not take on more load
size is small. than they can handle. However, our experiments clearly

show that increasing outdegree can actuadijuceindi-

#2 Super-peer redundancy isgood. Going back to Fig- vidual load, provided all peers do so. Figure 5 shows
ure 2 and looking at the curves for super-peer redundanayhistogram of individual incoming bandwidth loads for
we see that introducing redundancy has no significant aftper-peers as a function of outdegree for two systems
fect on aggregate bandwidth for both systems. In additiamith power-law topologies: one where average outdegree
Figure 3 shows that redundancy does decrease individisa8.1 (reflective of the Gnutella topology), and one where
super-peer load significantly. For example, when clusi@rerage outdegree is 10. Both systems have a cluster size
size is 100 in the strongly connected system, super-pe€R0, though these results are the same for any cluster
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Figure 5: When all super-peers in- Figure 6: With a low average outde- Figure 7: Estimating expected path
crease outdegree, individual and aggre- gree, many super-peers do not receive length given reach and outdegree
gate load decreases the full number of results

size. Figure 6 is like Figure 5, except it shows a histogramm its path back to the query source. Each hop taken con-
of expected number of results. As these figures pressanmes incoming bandwidth from the receiver, outgoing
histograms, vertical bars denote one standard deviatibandwidth from the sender, and processing power from
rather than confidence intervals. both; hence, the shorter the EPL, the more efficient a
First, note that while super-peers with very few (2 or 3juery is. For the systems shown in Figure 5, increasing
neighbors in the first topology do have a slightly lightetverage outdegree from 3.1 to 10 decreases EPL from 5.4
load than any super-peers in the second topology, tHeys.
also receive fewer results. For example, in Figure 5,For these benefits to apply, howevetl super-peers
when average outdegree equals 3.1, the expected loathgst agree to increase their outdegree. Consider the sys-
a super-peer with 3 neighbors is roughly - 10° bps, tem where average outdegreeis 3.1 in Figure 5. If a single
while Figure 6 shows that this node receives roughly 75@er with 4 neighbors decides to increase its outdegree to
expected results per query. In contrast, when average dutits load will increase from.18 - 10° to 3.58 - 10° bps,
degree equals 10, the expected load of a super-peer WitB03% increase. If all super-peers increased their out-
7 neighbors is slightly higher, at.7 - 10° bps, but the degree such that average outdegree is 10, then that super-
expected number of results it receives is much higher,pger will actually experience a 14% reduction in load, to
roughly 890. Hence, the “gain” in load comes with a codt01 - 10° bps.
in user satisfaction. Once a super-peer in the first topol-In summary, if every super-peer agrees to increase out-
ogy has enough neighbors (7) to attain full results, it heggree, every super-peer’s load will either decrease dra-
a load that is higher than that of most peers in the secanatically, or increase slightly accompanied by an increase
topology! Super-peers in a system with higher outdegréenumber of results. If only a few super-peers increase
therefore have a much lower load for a given number tifeir outdegree, however, those few nodes will suffer a
results. tremendous increase in load. It is important, therefore,

We can also see that super-peers with the highest oufdié! increasing outdegree be a uniform decision.
gree in the first topology must support an extremely heavyAS & caveat to this rule in extreme cases, it is possible
load, while the loads of all peers in the second topolod§ the outdegree to beoo large, in which case perfor-
remain in the same moderate range. In this respect, fRBNCE is negatively affected. Please refer to Appendix E
second topology can be said to be more “fair”. Furthéier & description of this caveat.

more, fewer concentrated points of heavy load in the fitg§ Minimize TTL. For a given outdegree and topology,
topology tr.allnslate to fewer points of failure, and thereforeach is a function of TTL. Since the expected number
less reliability. of results is proportional to expected reach, a designer

In terms of aggregate load, our results (shown in Apnay choose thdesired reactbased on the desired num-
pendix D) show an improvement of over 31% in bander of results, and then select the TTL that will produce
width and a slightly lower processing load is attained hjis reach. We will discuss how to select the TTL later in
increasing outdegree from 3.1 to 10. the section.

Increasing average outdegree improves performancdlowever, if the desired reach covers every super-peer
because it reduces tlexpected path lengtbf query re- in the network, then an infinite number of TTLs produce
sponses. The expected path length (EPL) is simply the &xe correct reach, since if TTlz=allows all nodes to be
pected number of hops taken by a query response messagehed, TTLz + 1 will have the same reach. In such
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a case, it is important to determine the minimum TTL | (1) Select the desired reach

needed to reach all nodes, and use that TTL. For exam{ (2) SetTTL=1 . S

ple, a system with average outdegree=20 and TTL=4 uses (3) Decrease cluster size until desired individual
. . : . load is attained.

roughly7.75 - 10% bps in aggregate incoming bandwidth e i :

for a full reach. However, that same system uses only if bandwidth load cannot be attained,

. . . decrease, as no configuration can be
6.30-108% bps, or 19% less aggregate incoming bandwidth, more bandwidth-efficignt than TTL=1.

if TTL is reduced to 3 (which still allows a full reach). _ifindividual load is too high, apply super-

Similar improvements are seen for outgoing bandwidth peer redundancy, and/or decrease

and processing load. (4) If average outdegree is too high, increment
The cause of this difference is the cost of sending un- TTL by 1, and go back to step (3)

necessary query messages when T™IB. Once queries (5) Decrease average outdegree if doing so doeg

have reached every node, any additional query messagg not affect EPL, and reachcan still be attained

will be redundant— that is, it will have traveled over a
cycle in the network, and arrive at a node that has al-
ready seen the query before. Any redundant query will

be dropped by the receiver. Although guery messages%%ired reach. (As mentioned before, the desired reach

not large, if every node sends a redundant query to e be ch dina to the desired ber of it

of its neighbors, the resources consumed can add up {] be chosen according 1o Ihe desired number of results
significant amount. per query, since the two are prpporuonal.) Although we
When reach covers every node in the system, the sifft! _npt prove the procedure yllelds the_ best” topology,
mpirical evidence from analysis shows it usually returns

plest way to choose the best TTL is for individual supef"—t | ¢ hichi i tb de with
peers to monitor the response messages it receives. gpology for which improvements can not be made with-
8H&VIO|atlng the given constraints.

super-peer rarely or never receives responses from bey ) . N
2 hops away, then it can decrease its TTlztwithoutaf- 1€ design procedure may be applied duiimigal de-
fecting its reach. sign time, and it can be appliédcrementallyas the sys-
When the desired reach covers just a subset of all nod&§) is running. For initial design, the desired properties
however, finding a TTL to produce the desired reach and constraints of the system, based on user behavior and
more difficult. Such a decision should be made globalleer characteristics, must be known at design time. Such

and not locally, since otherwise super-peers have an ipformation may be difficult to obtain accurately before
centive to set the TTL of their queries unnecessarily hight® System runs. Hence, in addition to the initial de-
to get more results at the expense of other nodes’ load$!9n Phase, a centralized decision-maker can run with the
The correct global TTL can be obtained by predictin@VStem and penod!cally re-evaluate the design procedure
the EPL for the desired reach and average outdegree, Qaged on observation and feedback from the super-peers.
then rounding up. Figure 7 shows the experimentallff®" €x@mple, users joining the Morpheus P2P network
determined EPL for a number of scenarios. Along tfaust first contact a centralized server which then directs
x-axis we vary the average outdegree of the topology (A86m t0 @ super-peer. Though little is known about what
sumed to be power-law), and the different curves shdliiS Server does in the proprietary Morpheus system, it is

different desired reaches.  For example, when averdgasible that this server, which is clearly in contact with
outdegree is 20 and the desired reach is 500 nodes, Fk%e_super-peers and has access to global information, can

ure 7 tells us the EPL is roughly 2.5. Hence, TTL shoulfake decisions on the best topology based on the cur-

be set to 3. Please refer to Appendix F for further detal@Nt Workload, and send directives to the super-peers to
in predicting a global TTL. achieve this topology. The next section discusses local de-

cision making in the absence of design-time information
. and a centralized decision-maker.

52 Procedure for Global Design Let us illustrate how the procedure works by using it to
Putting all these rules together, we now present a gégfine the topology used by today’s Gnutella system. As
eral procedure for the global design of a P2P topologyentioned in Section 4, analysis of network crawls show
shown in Figure 8. The global design procedure is iithat the average outdegree for Gnutella is 3.1. At the time
tended for a system administrator or designer, and its gothis writing, the current Gnutella network size has been
is to suggest an efficient system configuration given coigported to vary between 10000 to 30000 users [11], so we
straints and properties specified by the designer. Th&§@ose 20000 to be size of the network in our analysis.
constraints include the maximum load and open connéduster size is 1, since there are few or no super-peers,
tions allowed on an individual super-peer, and the maxnd analysis shows that the reach of such a topology with
mum aggregate load on the system, if desired. The prdp-L=7 is roughly 3000 nodes out of 20000 total.
erties include the number of users in the network and theFirst, let us specify the desired constraints and proper-

Figure 8:Global Design Procedure
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New (redundancy)
Table 4: Aggregate load comparison between today’s system,
and the new design

N

New (no redundancy)

Incoming Outgoing Processing | Number | EPL 10°
Bandwidth | Bandwidth Power Results _
(bps) (bps) (Hz) g .
Today | 9.08-10% | 9.09-10% | 6.88-10'° 269 6.5 = w
New 1.50-10% | 1.90-108 | 0.917-10'0 270 1.9 ]
New 1.56 -10% | 1.85-108 1.01 - 1010 269 1.9 =
w/ Red. g 1
m
2
o
=
>
o

Rank (igft’jecreasinlg requiredlﬁ)ad) Xlo“z
ties of our system. To compare the results of the procedure
with the current Gnutella system, we set reach to be 3000 Figure 9:New design has much lower loads
peers (equivalently;-2220— super-peers), and the size
of the network to be 20000 peers. For individual loads,
let us limit our expected upstream and downstream barslprobably much better than in the old, because EPL is
width load to 100 Kbps each way, our expected processimgich shorter. Table 4 also lists the aggregate cost of the
load to 10 MHz, and our expected number of open conew topology with super-peer redundancy. As we can see,
nections to 100. Let us also assume for now that to kegggregate cost is barely affected by the introduction of re-
the peer program simple, we do not want super-peer thindancy.
dundancy. Note that in specifying load limits, it is impor- Individual load likewise shows dramatic improvement.
tant to choose a limit that is far below the actual capabilFigure 9 shows the outgoing bandwidth load of every
ties of the peer, for several reasons. First, actual load mayde (super-peers and clients) in the system, for all three
exceed expected load during bursts of activity. Secondpologies. These values were taken from a single repre-
the expected load is faearchonly, and not for download, sentative instance of each topology configuration. Com-
chat, and other activities in the system. Finally, users wiaring the new topology with and without redundancy, we
probably not want all their resources to be devoted to thee that the average super-peer load (that is, the top 20%
system, but just a small fraction. ranked nodes in the topology with redundancy, and the
Now, let us run the procedure over our specification®P 10% ranked nodes in the topology without) is 41%
Reach has already been set to 3000 (step 1). Next, lgwer with redundancy than without. As a tradeoff, av-
set TTL=1, so that EPL=1 for most efficient bandwidtRrage client load is 2 to 3 times greater with redundancy.
usage (step 2). Now we must choose a small enough cldgwever, since client loads are already very low — on the
ter size such that our requirements for individual load ag&der of 100 bps —this load increase should be barely per-
met (step 3). Under our constraints, analysis shows #ptible to the clients.
largest supportable cluster size is roughly 20. However,Comparing the new topology without redundancy to to-
to achieve the desired reach, average outdegree musti@gs topology, Figure 9 shows that for the lowest 90% of
150 (in order to reacﬁ% = 150 super-peers), leadingloads in both system, individual load is one to two orders
to a total of 169 open connections (an additional 19 codf magnitude lower in the new topology than in the old.
nections for clients) — far exceeding our limit. Following his 90% corresponds to the 90% of nodes that are clients
the procedure (step 4), we increase TTL to 2, and selétthe new topology. Among the highest 10% of loads, we
a new cluster size of 10 using analysis, which meets alill see significantimprovementin the new topology over
our load requirements. To achieve our desired reach, e#feé old, ranging from 40% improvement at the “neck”
super-peer must have about 18 neighbors (since expeéeeurring at about the 90th percentile, to a whole order
reach will be bounded above by rough? + 18 = 342). of magnitude for the top .1% heaviest loads. Individual
Looking at Figure 7, we see that decreasing outdegree@gers will therefore have a much better user experience
fects our reach, so we will not change the outdegree (stith these reduced loads — including those who agree to
5). Total average outdegree is therefore 19 = 28. become super-peers, especially if super-peer redundancy

How does this new topology, generated by our prock-Used:

dure, compare with the old one? Table 4 lists the aggre-

gate loads of the two topologies, along with number &f3 | gcal Decisions

results. The new topology achieves over 79% improve-

ment over the old in all expected load aspects, while main-the case where constraints and properties of the system
taining slightly higher expected quality of results. Fuiean not be accurately specified at design time, and in the
thermore, though we do not capture response time in amase where a centralized decision maker is not desirable or
model, the average response time in the new topologjynply not available at the moment, super-peers should be
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able to make local decisions that will tend towards a glofew neighbors, it should consider dropping some clients
ally efficient topology. Here, we will qualitatively discsis to free up resources, or “resign” to become a client itself.

rules for local decision making, based on the global rul?ﬁ A super-peer should decreaseits TTL , aslong asit
from Section 51 _ . does not affect itsreach. For the case where the desired

In the following discussion, we assume that super-peggach is not every super-peer in the system, a decrease in
set a limit to the load they are willing to handle, and thatr|_ should only happen after an increase in outdegree, in
they are equally willing to accept any load that does ngfgder to maintain the same reach. For the case where a
exceed this limit (i.e., they will never refuse to increasgyde wants to reach all super-peers, according to rule #4,
their load unless it exceeds their predefined limit). Tf‘t’:—écreasing TTL may not affect reach, and should there-
guidelines we will discuss are actions that will helier fore always be done. A super-peer can tell if its reach has

super-peers at the expense of the super-peer who follqyégn affected by whether or not it receives fewer results.
them; hence, our “limited altruism” assumption allows us

to suppose that every super-peer is willing to incur these
expenses on themselves, which will ultimately result & Conclusion
less load for everyone. (Ongoing research in other con-
texts (e.g. [3, 8]) is exploring how to detect whether eveSuper-peer networks are effective because they combine
peer in a P2P system is correctly playing their part, atlie efficiency of the centralized client-server model with
punish the freeloaders and malicious nodes.) the autonomy, load balancing and robustness of dis-
tributed search. They also take advantage of heterogene-
I. A super-peer should always accept new clients. ity of capabilities across peers. Because super-peer net-
Given that the client must be served by some super-peefjgrks promise large performance improvements for P2P
the network, it generally does not make sense for a sup§fistems, it is important to understand their behavior and
peer to refuse the client. If a super-peer finds that its clysgy they can best be used. In this paper, we address
ter size is getting too large to handle (i.e., load frequenthis need by considering redundancy in super-peer design
exceeds the I|m|t), |t Should SeleCt a Capable Client froghd topo'ogy VariationS, and Carefu”y ana|yzing Super-
its cluster to become a partner as a redundant super-pggér network performance. From our results, we have
Alternatively, it can select a client from its cluster to beyeen able to extract a few rules of thumb that capture the
come a new super-peer, and the cluster should be splitiBi@ential tradeoffs, a global design procedure, and local

two. In this manner, the number of super-peers can adggtision-making recommendations for a globally efficient
for an increasing global workload. Likewise, if a clussystem.

ter becomes too small (i.e., load remains far below the . ]
limit), the super-peer may try to find another small clug:cknowledgements. We would like to thank Steve Grib-
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how small a cluster should be before the super-peer trf8§ir Gnutella measurement data, and Kelly Truelove and
to coalesce, as there are always other uses for the e&@f El Kurjie of DSS Clip2 for use of their crawl data.
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i Avg Incoming Outgoing Processing
B CalCUlatlon Of E[NT‘[] and Outdegree| Bandwidth (bps)| Bandwidth (bps)| Power (Hz)

E[RT‘[] 31 3.51 - 10° 3.49 - 10° 6.06 - 107
10.0 2.67-108 2.65 - 108 6.05-10°

The query model described in [22] defines two probab
ity functions: f (i), which gives us the probability that a
random submitted query is equal to quegy and g(i),
which gives us the probability that a random file will be a
match (a result) for query;. We will use the same distri- )
butions experimentally determined for the OpenNap Sy%nd therefore receive few results. The effects of both cases
tem in [22] for our default configuration, since OpenNaf'e Similar.
is also a file-sharing P2P system, and there is no availablé&igure A-10 shows the aggregate bandwidth of the
data from live super-peer networks. same four systems shown in Figure 2 (Section 5.1), but
Letx; be the number of files owned by clientf super- with the lower query rate. We observe two effects: first,
peerT, and letT" havec clients, and own:r files. The to- the aggregate load still decreases as cluster size desrease
tal number of files indexed b is z;o, = 7 + Y _;_; z;. but to a lesser degree than what we observed in Fig-
The query model assumes that the probability that a givere 2. Load decreases less rapidly because the savings in
file will be returned as a match is independent of whethguery communication overhead allowed by larger clusters
other files in the same collection are returned. With this now small in comparison to the load of joins. Second,
assumption, the number of files returned from a collectiove observe that super-peer redundancy causes aggregate
of sizen for a query of selection poweris distributed ac- load to increase by a greater amount than before. For ex-
cording tobi nomi al (n, p), and the expected value isample, when cluster size is 100 in the strongly connected

LI’able 5: Aggregate load comparison between an average out-
degree of 3.1, and an average outdegree of 10.0

thereforen - p. Hence, system, aggregate bandwidth increases by 14% with re-
E[Nal] = . dundancy.
[Nr 1] Z Ut ) 1ot ©®) Figure A-11 shows the individual incoming bandwidth

Now, let Q; be the |dent|f|er variable wher@; = 1 Of super-peers for the same four systems shown in Fig-

iff client 7 returns at least one resu'tP(Q ‘]) =1 — ure 3 (SeCtIOI’l 5. 1) but with the lower query rate. FII’St
(C||ent7 returns no resums_ 1— (1 _ )Tz where p is we observe that individual load now reaches a maximum

the selection power of the current query. Hence at ClusterSize= GraphSIzeSInce load is now dominated
c o by joins. Second, note that super-peer redundancy does
ElKr|I] = ZE Q.1 = ZZf(j)-(l (7))“>not decrease load as effectively as before (though the
i=1 j=0 improvements are still good). When cluster size is 100
(6) in the strongly connected network, individual incoming
. . bandwidth load decreases by roughly 30% with redun-
C %/Stem Performance with Differ- dancy, while processing load decreases by 18%. Recall
ent Action Rates that super-peer redundancy trades decreased query load
for increased join load, which is not as helpful when the
For the query and join rates observed for Gnutella, the f&lative rate of joins is high. However, bear in mind that
tio of queries to joins is roughly 10 — that is, a user wipuper-peer redundancy is still equally effective in improv
submit an average of 10 queries during each session. TiRgeliability.
ratio is important because it determines tekative load  |n summary, though the benefits of various cluster sizes
incurred by each type of action. Relative load of querigéd super-peer redundancy still apply, they may vary in
and joins is important because it affects the relative pefegree based on the relative cost and rates of queries to
formance of different configurations, depending on hojyins.
“join-intensive” these configurations are. For example,
the cost of joins is doubled with super-peer redundancy,
while the cost of queries is halved. If joins are expensive
relative to queries, this tradeoff may no longer be good.
Let us consider new configurations where the reIamQ Additional Results
load of queries to joins is low. In particular, we will
change the query rate listed in Table 1 to%h26 - 103, Table 5 lists the aggregate load for two topologies: the
such that the ratio of queries to joins is now roughly first with an average outdegree of 3.1, and the second with
We could have also decreased the relative load of quergsaverage outdegree of 10. Both topologies have a clus-
by making the cost of queries less expensive; for exampiey, size of 100, since the first topology yields a smaller
modeling a system in which all queries are for rare itenexpected number of results for any smaller cluster size.
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Figure A-10: Aggregate load with Figure A-11:Individual load of super-  Figure A-12: A modification to Rule
lower query rate peers with lower query rate #3: higher outdegrees can be harmful

E CaveattoRule3 path length. For example, when average outdegree is 10
and reach is 500, EPL is 3.0. However, setting TTL to 3

Looking at Figure 7 in Section 5.1 again, we see that fasults in a reach of roughly 400 nodes, rather than 500.

some cases, increasing outdegree does not significantl$econd, note that a close approximation for EPL in

affect EPL. For example, when desired reach is 500 nodagppology with an average outdegréés log,(reach).

increasing outdegree from 50 to 100 only decreases E®uch an approximation is most accurate for a tree topol-

by .14. In these cases, having a larger outdegree vaily where the query source is the root. In a graph topol-

not only be useless in decreasing EPL, it will actuallygy, the approximation becomes a lower bound, as the

hurt performance by increasing the number of redunddieffective outdegree” is lower than the actual outdegree

gueries. Figure A-12 illustrates this point, showing thdue to cycles. This approximation is useful for finding a

individual load of a super-peer with various cluster sizegpod TTL without running experiments like the ones used

for an average outdegree of 50 and 100, and TTL=2. tmgenerate Figure 7.

each case, the desired reach is set to be the total num-

ber of super-peers, which %{S For all cluster

sizes shown, systems with an average outdegree of 50

outperform systems with an average outdegree of 100 be-

cause the EPL is roughly the same in both cases, while

redundant queries increase with outdegree. Therefore, as

a modification to rule #3, outdegree should be increased,

so long as doing so decreases EPL. Once EPL ceases to

decrease, outdegree should not be increased any further.

This caveat has implications in both the global design

procedure (note step 5 in Figure 8) and local decision-

making. In terms of local decisions, it is difficult for a

super-peer to detect whether it has “too many” neighbors.

One possible method to detect this case is for the super-

peer to increase its outdegree, and then see if it starts re-

ceiving more query responses. If the number of responses

does not increase significantly, the connection should be

dropped.

F Detailsin Predicting Global TTL

There are two useful details to keep in mind while predict-
ing a global TTL, using the method described in rule #4
of Section 5.1. First, setting TTL too close to the EPL will
cause the actual reach to be lower than the desired value,
since some path lengths will be greater than the expected
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